
U. of Iowa 74-2

E1VERSTrY O.

74-20349

S 13B TBE L ELAXATIO/ OF A
TVO DIENSIOIAL DLAS0 IT lc MAGNETIC

yVT 2: pUEi'CL s CSCL 201 G3/25 cas16789

(Iowa Uni-) 15 P C .00

Department of Physics and Astronomy

THE UNIVERSITY OF IOWA
Iowa City, Iowa 52242



-. U. of Iowa 74-2

Thermal Relaxation of a Two Dimensional

Plasma in a dd Magnetic Field

Part II: Numerical Simulation

by

Jang-Yu Hsu
University of Iowa

Iowa City, Iowa 52242, U. S. A.

Glenn Joyce
University of Iowa

Iowa City, Iowa 52242, U. S. A.

and

David Montgomery*

Hunter College of the City University of New York

695 Park Avenue, N. Y., N. Y. 10021, U. S. A.

January 1974

*On leave from the University of Iowa



2

ABSTRACT

The thermal relaxation process for a spatially uniform two

dimensional plasma in a uniform de magnetic field is simulated numer-

ically. Thermal relaxation times are defined in terms of the time

necessary for the numerically computed Boltzmann H-function to de-

crease through a given part of the distance to its minimum value.

Dependence of relaxation time on two parameters is studied: number of

particles per Debye square no0  and ratio of gyrofrequency to plasma

frequency /* When 2/ becomes >> [ L/2ynD)11/2 where L is the

linear dimension of the system, it is found that the relaxation time

varies to a good approximation as (no 2)l1/2 and n//w
p



I. INTRODUCTION

In a companion paper (Part I), predictions were derived for

the rate of thermal relaxation of a two dimensional plasma model in a

de magnetic field. The principal prediction which is numerically

testable is that so long as n/u, the ratio of gyrofrequency to plasma

frequency, satisfies the inequality (/ )2 >> (L/2nD))-1/2, where

XD is the Debye length and L is the linear dimension of the system,

then the relaxation time should be proportional to f/w and to

(n 2)1/2, where no is the number density of the charged rods.

It will be seen below that both of these predictions appear

to be well fulfilled. In Section 2, the method of simulation is

briefly described. In Section 3, the results are described and

compared with theory.

2. Method of Simulation

The dynamical evolution of the plasma was simulated by fol-

lowing the trajectories of a large number of negatively charged rods

immersed in a positive neutralizing background. Standard particle-

in-cell techniques with area weighting were employed (Morse 1970).

The electric field was determined through Poisson's equation by fast

Fourier transforms on a 32 x 32 or 64 x 64 grid system. Periodic

boundary conditions were used throughout. The number of rods ranged

from 4,000 to 16,000.



Periodically a histogram representing the spatially averaged

distribution function was calculated. The value of the Boltzmann

H function was determined by summing the values of 2 v. f(v i )

O n f(vLi) Av.i obtained from the histogram. The optimum value of

Avli was found empirically, and for a range of Av (simply labeled

AV in the figures) neither too small nor too large, H(t) was found

not to depend upon Av.i (see Figure 1 ).



3. Results

Figure 1 shows a typical plot of H(t) vs t for zero magnetic

field, for the initial distribution: f(v) = 0 for jvj > 2, f(v)

= (4 r) - 1 for Ivl < 2. Times are always expressed in units of the

-1
reciprocal plasma frequency -1, and velocities are in units of the

thermal velocity Vth in the final expected Maxwellian f(v) tY

(2Vth) - 1 exp(- v 2 /2Vth). This makes the natural unit of length

Vth/u - D, the Debye length. The particles are loaded randomly in

position space and in a spiral fashion in velocity. AT is the size

of the time step. AV is the dimension of a cell size in velocity

space used in computing the sum which approximates jdvf2nf. a D /ms

is the ratio of Debye length to the cell size ms used in the particle-

in-cell computations. Roughly speaking, larger values of a mean

that the short range part of the potential is represented more ac-

curately. This accuracy is desirable in situations in which short-

range interactions become dominant in the relaxation process, as is

the case when 2/w becomes >> 1.
p

It is seen from Fig. 1, that while there is a substantial

change in the relaxation rate as C-i decreases from 1.2732 to 0.6366,

there is no appreciable change upon going to U-1 = 0.3183. It may

be safely assumed, then, that the interactions with impact parameters

S0.5X are primarily responsible for the decrease of H(t). Figure 1

should also inspire confidence that in the range in which the com-

putations are performed, the decrease of H(t) is independent of AT
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and AV, for all practical purposes. The results shown in Fig. 1 are

in good agreement with Montgomery and Nielson (1970).

Figure 2 shows that for finite magnetic field, increasing a

continues to increase the speed of thermal relaxation. This reflects

the fact that in a magnetic field, the thermal relaxation is deter-

mined by the close encounters (over-lapping gyroradii). Since

particle-in-cell computations necessarily "soften" the coulomb

repulsion at distances 4 a cell size, a decrease in cell size is

equivalent to a "hardening" of the coulomb repulsion at short dis-

tances, and thus results in an increased relaxation rate. It is this

dependence upon the (inaccurately represented) short range part of the

potential that has, for example, precluded our achieving better than

a factor of two in absolute agreement with numerical calculations of

energy exchange times for "test" particles and the analytical expres-

sions for them which can be derived from the kinetic equation.

Figure 3 shows one of our two main results, the variation of

the relaxation time with f/W. The relaxation time is defined by

setting H = -2.70 (its initial value is -2.531 and its t = a value is

-2.837). The 0 = 0 result is close to the value obtained previously

(Montgomery and Nielson, 1970). Above about /O = 4, we may assert

that 2/W >> E(L/2D) -1/2 (our system is 16 units of %D in linear

dimension), so that the linear prediction of Part I is appropriate,

and is seen to be well fulfilled, being accurately fit by dREL/d

= 1.5 for the lower curve and dTREL/d = 2.9 for the upper curve.
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Note that the coefficients stand in about the same ratios as no .

Between Q/u = 0 and 9/w = 4, we have no satisfactory theory.

Figure 4 shows the relaxation time TREL vs the square root of

the number of particles per Debye square for two different magnetic

field strengths. Both sets of data points are seen to be well fit by

straight lines.

4. Discussion

The predictions that the thermal relaxation times of a two

dimensional magnetized plasma model vary proportionally to /u/ and

(n 2)1/2 have been verified by simulation methods.siultonehos



8

ACKNOWIEDGMENTS

This work was supported at the University of Iowa by USAEC

Grant AT(11-1) 2059 and NASA Grant NGL-16-001-043. Part of the

numerical computations were done on the computing system of the City

University of New York.



9

FIGURE CAPTIONS

Figure 1 H-value as a function of time varying AT (time step),

AV (velocity interval), and a. The magnetic field

is zero.
-1

SYMBOL AT AV 1

X 0.25 1/55 1.2752

0 0.50 1/44 1.2732

* 0.50 1/55 1.2752

+ 0.25 1/55 0.6366

r 0.50 1/53 0.6366

0.50 1/44 0.6366

A 0.25 1/55 0.3183

A 1.0 1/55 0.3183

i 0.50 1/44 0.5183

Figure 2 H-value as a function of time.

n/o = 0.5.

Figure 3 Relaxation time vs magnetic field strength for

constant n .

Figure 4 Relaxation time vs (no 2)1/2 for constant magnetic

field strength.
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